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A model predicting leakage current in a bipolar battery stack is presented. This model  applies current 
balance and potential balance equations to a stack and treats the electrolyte, manifold and membrane 
separator as resistance elements in an electric circuit analog. This results in a set o f  linear difference 
equations with constant  coefficients. Leakage currents in stacks made up of  different numbers of  cells 
are predicted and the effect of  each resistance component  on stack performance is investigated. 

Nomenclature 

Cj j = 1 . . .  5, constants in Equations 24-29, 
defined in the Appendix 

Dj j = 1 . . . 5, constants in Equations 25-29, 
defined in the Appendix 

E difference operator, Ef, = f~+i 
IL load current (A) 
K manifold current, anodic (A) 
L manifold current, cathodic (A) 
N number of cells in the bipolar stack 
RA lateral electrolyte resistance, anodic (f~) 
Rc lateral electrolyte resistance, cathodic (f~) 

1. Introduction 

A bipolar battery consists of a stack of cells in which 
all electrodes, except the two at the ends of the stack, 
serve a dual function, i.e. as cathode of one cell and as 
anode of the next cell. The electrolyte is fed into the 
cells by inlet manifolds. Figure 1 shows schematically 
what a typical bipolar stack may look like. The advan- 
tage of a bipolar stack is that, due to the compact 
design (especially the elimination of tabs and intercell 
connection), both the energy density and power out- 
put can be quite high. Nevertheless, a shortcoming of 
this design is that a leakage current, sometimes called 
shunt or bypass current, flows between the electrodes 
via the interconnecting electrolyte paths among cells 
and manifolds. Problems arise because the leakage 
currents obviously cause a loss of battery efficiency. 
However, they may also cause corrosion of electrode 
material and undesired by-products [1]. Thus an 
analysis of the extent of leakage current is important 
for optimal stack design. 

Several efforts have been devoted to the modeling 
and simulation of leakage current in a bipolar stack. 
Rougar and Cezner [2] were among the earliest to model 
the 'parasitic currents' by a network of resistances. 
Katz [3] first introduced nonlinear components into 

R~ electrolyte resistance, anodic (D) 
Re2 electroylte resistance, cathodic (~) 
RMA manifold resistance, anodic (fl) 
R~c manifold resistance, cathodic (f~) 
Rs membrane resistance (f~) 
V0 cell potential (V) 
is battery current, anodic (A) 
/2 battery current, cathodic (A) 
k leakage current, anodic (A) 
l leakage curent, cathodic (A) 
rj j = 1 . . . 5, roots of the characteristic 

equation, solved in the Appendix 

the equivalent circuit network. He used Zener diodes 
and resistances together as network components and 
found the leakage current by solving a set of N by N 
simultaneous linear equations, where N is the number 
of cells in the stack. Kuhn and Booth [1], reviewing the 
topic of bipolar leakage current, considered the use of 
exclusively pure resistance or Zener diodes network 
unrealistic, but modified the Zener diode approach of. 
Katz and used it as a unit cell to calculate the leakage 
current. They were also the first to use a commercially 
available computer software package [4] to simulate 
the leakage current. Kaminski and Savinell [5] simi- 
larly used a pure resistive network, but applied the 
principles of difference calculus to solve the problem 
and expressed the leakage currents by series with a 
finite number of terms. The resulting set of 5 by 5 
simultaneous equations was solved for the coefficients 
of the series. Szpak et al. [6] analyzed the leakage 
current in a cylindrical Li/SOCI2 battery using essenti- 
ally the same resistive network and solved the set 
of N by N equations, but the determination of the 
coefficients was more complicated because of the 
cylindrical geometry. White et al. [7] simplified the 
resistance network by combining anodic and cathodic 
path resistances, which are parallel to each other, 
into one resistance and applied Newman's BAND (J) 

Current address: Department of Applied Mathematics, Shanghai Jiao Tong University, Shanghai, China. 

0021-891X/89 $03.00 + .12 �9 1989 Chapman and Hall Ltd. 247 



248 MIN-ZHI YANG, HAM WU AND J. ROBERT SELMAN 

Anodic Cathodic 
Manifold Manifold 

Anolyte Outlet .~k L Catholyte Outlet 

Cathodic " ~ " ~  
Manifold [~  ~ ~ ~..~Anodic 

/ ~ - . _ ~ ' ~ , ~ . ~ J / I M a n i f o l d  

~ ~ n  let 
Catholyte m~e~ Separator Electrode 

Fig. l. Schematic of a bipolar battery stack. 

subroutine [10] to solve the set of simultaneous 
equations. 

In all cases discussed thus far, attention was focused 
on the method of solving for the leakage currents but 
not much attention was given to the relative import- 
ance of individual resistance components in the cell 
stack. This lack of attention is especially regrettable 
for the membrane separator which is an important 
resistance contribution. In the present paper, we 
extend the basic network analysis found in the 
literature by (1) adding a resistance component 
representing the separator, and (2) separating the 
anodic and cathodic channels. The effect of each 
resistance component and of the number of cells on 
the level of the leakage current as well as the power 
efficiency is investigated. 

2. Theory  

The bipolar battery stack is represented by the circuit 
diagram shown in Fig. 2, and the current component 
diagram is shown in Fig. 3. The load current, IL, at the 
terminals of the battery is kept constant and the sur- 
faces of the electrolyte feed system are considered 
nonconducting. The current distribution along the 
electrode is assumed uniform, so that the current 
paths can be represented by resistances. Cell polar- 
ization is assumed linear; it is represented by the com- 
bination of a resistance-free voltage source, V0, and an 
internal resistance, which is lumped into the ohmic 
resistances Re, o r  Re2 , of the anodic and cathodic 
electrolyte, respectively. (It will be demonstrated later 
that, as long as the total resistance in the path of the 
battery current is constant, the ratio of Re, and Re2, i.e. 
R~/Re2,  is irrelevant.) 

The membrane which separates anodic and cathodic 
channels is represented by R~. Electrolyte resistances 
in the anodic and cathodic manifold are represented 
by Rw, and RMC, respectively; RA and Rc stand for the 
electrolyte resistances in the anodic and cathodic 
channels perpendicular to the manifolds. The main 
current in the stack flows directly from one terminal to 

the other through all the cells. In each cell this 'battery 
current' is indicated as i J and i 2, on the negative and 
on the positive side of the separator, respectively. The 
leakage currents k and l in the anolyte and the 
catholyte channels, respectively, are assumed to be 
perpendicular to the battery current. They are taken 
to be positive when they are flowing toward the mani- 
folds. The manifold currents K and L in the anolyte 
and the catholyte channels, respectively, flow parallel 
to the battery current (positive) or opposite to it 
(negative). 

Applying Kirchoff's laws to this network at the nth 
cell analog results in a set of six simultaneous linear 
equations with six variables: two leakage currents 
(k, l), two manifold currents, (K, L) and two battery 
currents (i ~ , i2). The first four equations of the set are 
derived from the current balance equations on A, E, B 
and G: 

K,+I - K, - k,+l = 0 (1) 

L,+~ - L , -  l,+~ = 0 (2) 

i2+, - i,~ + 2k,+~ = 0 (3) 

g + 2 l . -  i2 = 0 (4) 

The other two are the potential balance equations 
for loops ABCD and EF G H  formed by the analog 
elements of the nth cell: 

RA(kn+ 1 - k , )  - RMAK n 

+ (Re, + R s ) i  I + Re~i.  ~ - V0 = 0 (5)  

Rc(/,,+, - l . )  - -  RMcL.  

+ (R~, + Rs)i~+, + Re2i~ - V0 = 0 (6) 

Equations 1-6 may 
difference equations 

where 

be rewritten in the form of linear 
with constant coefficients [9] 

( E -  1 ) K -  Ek = 0 (7) 

( E -  I ) L -  El = 0 (8) 

Ei'  - i 2 + 2Ek = 0 (9) 

i 2 -  2 t -  i t = 0 (10) 

RA(E - 1)k - RMAK 4- (Re, § Rs) i  l 

+ R o 2 i " - v o  = o (10  

R c ( E -  1)/ - RMcL + (Re) + Rs)Ei  1 

+ Re2i 2 - V0 = 0 (12) 

K = K . ,  k = k . ,  L = L . ,  

l =  ln, i l  -~- i2, i 2 =  i 2 , 

fl~)MA ~MA ~)MA ~MA ~MA 

c t- 
_~ Pel/?s #e2 ~?~l/?s/Tez /?el/?~ /?el /75 P~ 2 /7,1 #5/?ez 

Fig. 2. Circuit analog of an N-cell assembly. For sim- 
plicity, only the upper half of the circuit is shown. 
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Fig.  3. C u r r e n t  c o m p o n e n t s  a n d  n o d e  p o i n t s  used  in 
E q u a t i o n s  1-6. 

E is the difference operator: 

Ef(x ) / (x )  = f ( x  + 1), 

and 

E"f(x)  = f ( x  + n). 

i 2, however, may be eliminated in the above 
equations by the use of Equation 10. The result is a set 
of five linear difference equations in five variables with 
constant coefficients: 

(E - 1 ) K -  Ek = 0 (13) 

(E - 1 ) L -  El = 0 (14) 

( E -  1)i t + 2 l +  2Ek = 0 (15) 

R A ( E  - 1 ) k  - R M A K  + (Re~ + R s ) i  ~ 

+ Re2(i '  - -  2 l )  - V 0 = 0 ( 1 6 )  

Rc(E - 1)/ - RMcL + (R~ + Rs)Ei L 

+ R e 2 ( i  1 - -  2/) - [~ = 0 (17) 

where K, L, k, l, and i ~ are to be determined. The 
boundary conditions may be written as: 

K0 = 0 

KN = 0 

L0 = 0 

L N = 0 

i) + 2kl = IL 

The set of  Equations 13-22 may be solved by the 
calculus of difference equations [8]. The details of this 
solution are presented in the Appendix for reference. 
The general solution for the currents may be expressed 
in the form of series with a finite number of terms 
having constant coefficients: 

4 

k , , =  EG ; 

4 

/~ = 2 CjDfl)" 
j = l  

4 .n 
"~ - 2  y, Q(rj + Dj) 'J In : j=l ~ Jr- C5 (25) 

i 2 = --2 ~ G(1 + Dj) rf+' J=' ~ + C5 (26) 

+' 

j = l RMA RMA 

(27) 

i Re1 + Re~ + R~ V0 L~ = CjDjr;+ '  + - 

./= I rj - -  1 RMC RMC 

(28) 

The definitions of the constants ~ and Dj, and the 
roots rj, can be found in the Appendix. 

3. Results and discussion 

A systematic study was made of the effect of  varying 
each resistance component shown in Fig. 2. The effect 
of varying the number of cells was also investigated. In 
order to compare these effects on a common basis, the 
leakage currents, manifold currents and battery 
currents were calculated for a standard case whose 
parameter values are listed in Table 1. Subsequently, 
the values of most parameters were systematically 
varied. The cell potential V0 and the output load 
current IL were kept constant. The total internal resist- 
ance, Rt, defined by 

R t = R~ + Rel  "Jr- Re2 (29) 

was constrained according to 

v0 
R~ < - -  (30) 

(18) IL 

(19) i.e. the current produced in each cell was always 
(20) greater than the load current. 

Since we are interested in the relative effects of 
(21) various resistance components, the choice of standard 

values is arbitrary. The values shown in Table 1 are 
(22) generally of the correct order of magnitude, but 

illustrate a case of rather severe leakage current effect. 
Using the values in Table 1, we calculate the leakage 

current, battery current and manifold current, as 
shown in Fig. 4. Table 2 lists their maximum values. 
The current in the manifold flows in the direction 
opposite to the battery current. The magnitude of the 
manifold current is zero at both ends of the stack and 
increases toward the middle of  the stack. Accordingly, 

(23) the leakage current flows away from the cell to join the 
manifold current in the positive half of the stack 

(24) (between the positive end and the middle of  the stack) 
and flows back into the cell in the other half. The 

Table 1. Standard parameters used in the illustration 

R A = 1 0 0 0 ~  R c = 1 0 0 0 ~  

R~l = R~2 = 0 . 5 ~  R~ = l f i  

RMA = 1 0 ~  RMC = 1 0 ~  

V o = 1 .5V 1 t = 0 . 5 A  

N = 20 
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Fig. 4. Leakage current, battery current and manifold current 
calculated using the standard parameters of Table 1. 

battery current inside the stack is always greater than 
the load current at the terminals and forms a maxi- 
mum at the middle of the stack. As the leakage current 
increases, the maxima of both the manifold current 
and the battery current increase. This is due to the 
constraint that the sum of manifold current and 
battery current is constant. The manifold current is 
actually the sum of the leakage currents: 

ii 1 + K i = constant (31) 

N 

= - Z (32) 
n = l  

The power efficiency, defined as the ratio of power 
produced between the positive and negative terminals 
of the battery stack to the total power generated by 
the individual cells within the stack, is calculated 
according to 

AVle  
s = E i zV 0 (33) 

where A V is the potential difference between the 
battery terminals and is calculated by 

N - 1  

A V  = - k i R A  -- 2 KjRMA q- kNRA 
j = l  

- -  (Re1 + Rs)i~ - 1~2i~ + Vo (34) 

In this case, ~ has the value of 26.1%. As mentioned 
before, the choice of the standard values is arbitrary, 
and in this case the low manifold resistance and high 
separator resistance are mainly responsible for the low 
efficiency. 

The distribution profiles of the leakage current, 
battery current and the manifold current are similar in 
all calculations. Therefore, in the following discussion 
we assess the leakage effect by comparing the changes 
in maximum leakage current and in power efficiency. 

3.1. Number  o f  cells 

As shown in Fig. 5, the leakage current increases as the 

Table 2. Calculated results using the standard parameters 

Maximum leakage current 
Maximum battery current 
Maximum manifold current 
Power efficiency 

3.032 x 10 3A 
0.556A 

- 1 . 4 1 8  x 10 - 2 A  

0.261 

- -  Efficiency 

. . . . .  Maximum Leakage c~ 
u 

0~ 
N 
o 

/ 
.o  / 

or- z 

10 20 30 L0 50 

Number of  Cells 

Fig. 5. Effect of the number of cells on the maximum leakage 
current and power efficiency in a bipolar battery stack, expressed in 
ratio to the values for the standard case. 

number of cells, N, increases, but flattens out beyond 
25 cells. The efficiency, on the other hand, decreases as 
N increases. Note that in these calculations the load 
current is kept constant. Thus, to maintain current 
output as N increases, extra current must be generated 
in the cells to compensate for the increase leak to 
the manifold. Consequently, although the battery 
voltage increases, the efficiency keeps decreasing 
with increasing N. 

3.2. Total internal resistance 

The effect of the total internal resistance on the 
performance of the battery is shown in Fig. 6. The 
asymmetry of the electrolyte resistances Re~ and Re2 
does not have much effect on the current distribution. 
As long as the total resistance R t is kept constant, the 
values of leakage current and power efficiency vary no 
more than 1%, even though the ratio of e e l  t o  R e 2  

varies from 1/3 to 4 and the separator resistance from 
zero to 80% of the total resistance. This is expected 
because the lateral resistances RA and Rc are much 
larger than the electrolyte resistances R,~ and Re2. 

On the other hand, if the total resistance increases, 
the leakage current and the power efficiency both 
decrease, as shown in Fig. 6. The decrease of leakage 
current is a result of Ohm's Law: as the total resistance 
is increased, the current produced in each cell by a 
constant voltage source is less, consequently less 
current is leaked to the manifolds in order to maintain 
a constant current ouput. The efficiency decreases 

Max imum Leakage 

Efficiency 
2 " ' - .  . . . . .  

Cv" 

1 2 

Ratio to Standatd Case 

Fig. 6. Effect of total resistance on the maximum leakage current 
and power efficiency in a bipolar battery stack, expressed in ratio to 
the values for the standard case. 
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Fig. 7. Effect of  anodic manifold resistance on the maximum leak- 
age currents in a bipolar battery stack, expressed in ratio to the 
values for the standard case. 
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Fig. 10. Effect of  lateral electrolyte resistances on the power 
efficiency in a bipolar battery stack, expressed in ratio to the values 
for the standard case. 
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Fig. 8. Effect of  manifold resistances on the power efficiency of  a 
bipolar battery stack, expressed in ratio to the values for the 
standard case. 

because more power is consumed to overcome the 
internal resistance. 

3.3. Manifold resistances 

Variation of manifold resistances affects only the com- 
partment to which the manifold is connected, i.e. 
cathodic currents are affected only by the cathodic 
manifold resistance, but not by the anodic manifold 
resistance (Fig. 7). The anodic leakage current, on the 
other hand, decreases sharply near the symmetry 
point, i.e. the intersection point of the two curves in 
Fig. 7, where anodic and cathodic manifold resist- 
ances are the same, and tends toward a constant value. 

Figure 8 shows that manifold resistance does not 
have much effect on the battery efficiency except near 
the symmetry point. This is due to the fact that the 
total internal resistance is constant: when the mani- 
fold resistance becomes much greater than the cell 
internal resistance, this will not change the potential 

.2 
g: 2 

u 1 

- -  Anodic 

. . . . . . . . .  Cathodic 

\ . ~ '  ........................................ 

2 4 6 8 10 

Lateral Resistance/Standard Case 

Fig. 9. Effect of anodic lateral electrolyte resistance on the maxi- 
mum leakage currents in a bipolar battery stack, expressed in ratio 
to the values for the standard case. 

and current distribution within the battery. Con- 
sequently, the power efficiency remains the same. 

3.4. Lateral electrolyte res&tances 

The effect of the electrolyte resistances in the lateral 
direction is similar to the effect of the manifold resist- 
ance discussed above (Figs 9 and 10). Again, R A and 
Rc are much larger than the internal resistance of the 
cell, so the change of electrolyte resistance in the 
lateral direction has little effect. 

4. Conclusions 

(1) Calculating leakage current in a bipolar battery 
stack by methods of difference calculus is very efficient 
compared to the matrix method, in which N by N 
simultaneous equations are to be solved. 

(2) Leakage current in a bipolar stack is most 
sensitive to the internal resistance in the direction of 
the battery current. 

(3) Lateral electrolyte resistances and manifold 
resistances have some effect on the leakage current, 
but only on the leakage current in the compartment 
whose resistance is varied. This effect is much weaker 
than that of total internal resistance. 
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Appendix 

The governing Equations 13-17 are the result of 
current and voltage balances on the nth cell assembly. 
After eliminating i 2 by Equation 10, Equations 13-17 
become: 

( E -  1 ) K -  Ek = 0 (13) 

( E -  1 ) L -  El = 0 (14) 

( E -  1)i 1 + 21+ 2Ek = 0 (15) 
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RA(E - 1)k - RMAK + (Re, + Rs)i '  

+ Re2(i' - 2/) - V 0 = 0 (16) 

Rc(E - 1)/ - RMc L + (Rel + R,)Ei  ~ 

+ Re2(i' - 2l) - V 0 = 0 (17) 

with boundary conditions 

Ko = 0 (18) 

KN = 0 (19) 

Lo = 0 (20) 

LN = 0 (21) 

i~ t + 2 k ,  = I L ( 2 2 )  

K and L are eliminated from Equations 16 and 17 
by Equations 13 and 14, respectively. Equations 16 
and 17 then become: 

[R,~(E - 1) 2 - (2R~l + 2Re2 + 2R~ + RMA)E]k 

- [2(R~ + R~2) + 2Re2E]I = 0 (35) 

-2[(R~, + R~)E + Re2]Ek + [Rc(E - 1) 2 

- (2Re, + 2Re2 + 2R~ + RMc)E]/ = 0 (36) 

l is further eliminated from Equations 35 and 36. The 
result is 

[RA(E - 1) 2 - (2R~, + 2Re2 + 2R~ + RMA)E] 

• [Rc(E - 1) 2 - (2Re, + 2Re2 + 2R~ + RMc)Elk 

- -  4[Rel + Rs)E 2 + Re2E] 

• [Re2E + (Re, -t- R.,)]k = 0 (37) 

Equation 37 is a linear homogeneous difference 
equation with constant coefficients. The order of the 
equation is equal to the highest power of  E, i.e. 4. This 
is also equal to the number of the arbitrary constants 
that will show up in the solution [8]. If  the character- 
istic equation has no multiple roots, the general sol- 
ution of  Equation 37 is 

4 

k = Z CjrS' (38) 
j - I  

and the general solution for l is 

4 

l = ~ QDir;  (39) 
j=l 

In the above equations, the quantities Cj are 
arbitrary independent constants to be determined 
from the boundary conditions, the quantities r s are 
roots of the characteristic equation, and the quantities 
D s are constants and functions of t). They are solved 
for after the general solutions have been found. 

Substituting the solutions for k, Equation 38, 
into Equation 13, we arrive at the following equation 
for K: 

4 

( E -  1)K = ~ Cj7 +' (40) 
j=l 

This is nonhomogeneous linear difference equation. 
We have to find both the homogeneous and particular 

solution to Equation 40. First, the homogeneous sol- 
ution is found by substituting r = 1, the root of the 
characteristic equation r - 1 = 0 corresponding to 
Equation 40, into the above equation. The homo- 
geneous solution R is 

g = G r  ~ = C; (41) 

and the particular solution can be written as [8]: 

K* X4=' Cjr;+ ' 
- ( 4 2 )  

:c;=, rj - 1  

Therefore the complete solution is 

' C,r, "+' 
K = / s  K* = Cs + s = , ~ - - -  "~ (43) 

L is obtained in a similar way: 

L = C'5' + i CjDj~'+' (44) 
j = l  r j - 1  

The general solution of i I is obtained by substitut- 
ing Equations 38 and 39 into Equation 15. The result 
is: 

(E - 1)i' = - 2  CjDjr; + Z Cjr'] +' (45) 
j = l  j = l  

Again, this is a nonhomogeneous linear difference 
equation. The general solution is obtained in a similar 
way as K and L: 

4 n 

i ~ = C5 - 2 ~. Cj(D s + rj) r) (46) 
j=l r s - 1 

Substituting Equation 46 into Equation 10, we get 

i 2 = i ~ - 2l 
4 

Cs 2 Z Cj(1 + g )  r;+' = - - -  (47) 
j_~ r j -  1 

In Equations 40, 44 and 46, Q,  C 7, and Ci' are all 
constants, however, C5, C~ and C;-' are not indepen- 
dent of each other. We will find their relation as 
follows. Substituting K, k, L, 1 and i j into Equations 
16 and 17, we obtain 

4 4 

RA Z Cjr; +' -- RA E g r ;  -- RMAC~ 
j = t  i I 

, c / ; + ,  
- + ( e e l  + + Rs)C, 

4 n 

Re2 + C j ( g  + rj) r) 
j=l " r j -  1 

CjDj.r~- V 0 = 0 (48) 

- -  2(Re1 + 

4 

- 2Re2 
j = l  

4 4 

%z) j )  - Rc Z CjDjr) - RMcC s 
j = l  j - - I  

- 

CjDjr;+_____2 l 
j=l r j -  1 + (R,t + Re,_ + Rs)Cs 

4 r~+l 
- 2(Ro, + Re2 + y C j ( g  + r j ) -  

s=1 r j -  1 
4 n+ 1 

- 2Re2 Z Cj(Dj+ 1) r) V0 - 0 
s=~ i) - 1 

(49) 
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Equations 48 and 49 are identical, therefore the sum of 
all terms with identical exponents as well as the con- 
stant terms must be zero. Thus we obtain the follow- 
ing relationships: 

RAt'] __ RA __ RMA rj 
r j - 1  

- 2(Rr + R~2 + Rs)Dj + ,) 2Re2D j = 0 
r j - - 1  

--RMAC; + (Rel -{- Re2 + Rs)C s - V 0 = 0 

- R M c C  J -l- (Re1 + Re2 + Rs )C  5 - g 0 = 0 

Solving these for C~, C'5' and Dj in terms of C5 and rj: 

, Rel + Re 2 + Rs C5 V~ 
C5 = - - -  (50) 

RMA RMA 

C5' = Re, + Rr + Rscs  - V 0  (51) 
RMC RMC 

RA(r j -- 1) 2 --  (2Re, + 2Re2 + 2R~ + RMA)r j 

Dj = 2(Re 1 + Rs ) + 2Re2rj 

(52) 

Using the above equations, we may then rewrite the 
general solutions (Equations 23-28) as: 

4 

< = Eq ; j=l  

4 
l. = E CjDjry 

j = !  

4 n 
.1 --2 Z C/rj + 1)]) r) In = j = 1 ~ ~- C5 

i 2 - 2 ~ q(1 + Dj) 
r ; +  1 

j=l  r - - ~  - ~  1 -~ C5 

+ Cjr; +' ~Rel -~- Re2 + .R s V 0 
K, = = T--_ i + C , - - -  

j = 1 _ RMA RMA 

~ C D  r n+l Re1 if- Re2 q- Rs V0 
L. = J j y + C5 - - -  

j=1 rj -- 1 RMC RMC 

The quantities rj ( j  = I . . . 4), as mentioned above, 
are the roots of the characteristic equation of the 
system, Equation 37, and can now be evaluated. 
Rewriting Equation 37 with the aid of Equation 38: 

{RARc E4 + [ -4RAR c - Rc(2Rel 

+ 2R~2 + 2R~ + .RMA ) -- RA(2Rel + 2Re2 

+ 2R~ + RMC ) --  4Re2(Rel + Rs)]E 3 

+ [6RARc + 2Rc(2Rej + 2R~2 + 2R~ + RMA) 

+ 2RA(2Rel + R~2 + 2R~ + RMA) 

+ (2R~1 + Re2 + 2R~ + RMC)(2R~I + 2Re2 

+ 2R~ + RMC) -- 4R~2 -- 4(Re1 + R~)2]E 2 

+ [-4RARc - Rc(2R~I + 2R~z + 2R~ + RMA) 

- -  RA(2Re~ + 2Rr + 2Rs + RMC) 

- 4R~2(Rr + R~)]E + RARc}k = 0 (53) 

If we define 

A = 4RAR c + Rc(2Rel + 2Re2 + 2R~ + RMA ) 

+ RA(2Rel + 2Re2 + 2Rs + RMC ) 

+ 4Re2(Re, + R~) (54) 

B - 6RARc + 2Rc(2R~I + 2Re2 + 2R~ + RMA ) 

+ 2RA(2Rel + 2Rr + 2R~ + RMC) 

+ (2Rr + 2P~e + Rs + RMA)(2Rel + 2Re2 

+ 2R~ + RMC) -- 4R~2 -- 4(R~1 + R~) 2 (55) 

C =- RARc  (56) 

and let r be the root of Equation 53, then the latter 
becomes 

Cr 4 - A r  3 + B r  2 - A r  + C = 0 

0 " 2 -  ar + 1)(r 2 -  br + 1) = 0 

Solving for r, we obtain: 

a 
rl,2 = +_ ~ / ( a )  ~ - 1 (57) 

r3, 4 = ~ ~ ~ - 1 (58) 

wherea + b = A/C, andab + 2 = B/C, aandbare  
defined as 

a : ~ + A ) 2 -  4 ( C -  2 ) (59) 

Finally, we solve for Cj ( j  = 1 . . . 5) by substituting 
Equations 43, 44 and 46 into the boundary conditions, 
Equations 18-22, 

4 
K o = E C i  rj + 

j=l r j --  1 

Vo 
- 0 

RMA 

Rel + Re2 + Rs C5 
RMA 

(61) 

& r~ +t Rr + Rr + Rs 
K N = L C j  + C5 

j = 1 ~ RMA 

Vo 
- 0 (62)  

RMA 

4 Re ! + Re 2 + Rs C5 Lo = E CjD ] r1 + 
j=l r j -  1 RMC 

Vo 
- 0 (63)  

RMC 

r[ +1 Rel + Re2 + R~ 
L N = CjDj 4- Cs 

j=l r j -  1 ' RMC 

v0 
- 0 (64 )  

RMC 

i~ + 2kl = 2 ~ C~(1.= r J - } - O J ) - - [ - C  5 r j  - = IL 

(65) 
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where rj, Dj, ( j  = 1 . . . .  4), Re, Rs, RMA , RMC , 

and V0 are all known.  The constant  coefficients Cj 
are easily solved for by inverting a 5 x 5 matrix 
according to Equat ions 61-55. Once the coefficients Cj 
are known,  the leakage current can be calculated 
immediately. 

Note:  It is obvious that  the coefficients ~ can be 
solved if, and only if, rj ~ 1. I f  we assume r = 1 and 
enter this into either Equat ion  57 or  58, we will get, 
with the help o f  Equat ions  59 and 60, 

A B 
2 2 = 0 

C C 

Substituting the definitions o f  A, B and C into the 
above equation, it becomes 

2RMA(Rel + Re2 + Rs) 
RA Rc 

2RMc(Rel + Re~ + Rs)RMARMc 
+ - 0 (66) 

RA Rc RA Rc 

When the combinat ion of  the resistances happens to 
satisfy Equat ion  66, we may have difficulty in calcu- 
lating the coefficients Cj because it involves the 
inversion o f  a singular matrix. 
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